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Why study dimension?

Have you ever thought about snowflakes?

A. Halavati (): What is dimension? 2/79 .



Why study dimension?

What about trees?

A. Halavati (): What is dimension? 3/79 .



Why study dimension?

What about the veins on a leaf?

A. Halavati (): What is dimension? 4/79 .



Why study dimension?

What makes them look so complicated?

What does it even mean for a snowflake or a tree or the veins on a leaf
to be complicated?

Is there a way to measure something about their structure?

Can we find a Good measure, to be able to compare a snowflake to a
leaf, or to a tree?

In this talk I will show you one way to measure the dimension of any
snowflake or general shapes!

A. Halavati (): What is dimension? 5/79 .
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Prelude

What is
Dimension?

A. Halavati (): What is dimension? 6/79 .



Food for thought

It’s easy to say what is the dimension of the shapes below.

Figure: The line is 1D, the square is 2D and the cube is 3D!

A. Halavati (): What is dimension? 7/79 .



A naive answer

When something has a whole-number dimension, like d , it means that we
need d parameters to find any point.

In a space with d dimensions, you have d degrees of freedom to move!

This intuition works well for integers! But what if you are moving on a
snowflake? What about on the branches of a tree? What about the
Serpinski triangle? The Koch’s snowflake?

A. Halavati (): What is dimension? 8/79 .
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Koch Snowflake

The Koch’s snowflake looks like the following:

Figure: The process of making a Koch snowflake.

At each step the length in multiplied by 4/3. This says that the length
increases exponentially. In other words the 1-dimensional volume (length) of
the end object cannot be finite.

We need to rethink What dimension actually means!

A. Halavati (): What is dimension? 9/79 .
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Koch Snowflake

The Koch’s snowflake looks like the following:

Figure: The process of making a Koch snowflake.

At each step the length in multiplied by 4/3. This says that the length
increases exponentially. In other words the 1-dimensional volume (length) of
the end object cannot be finite.

We need to rethink What dimension actually means!
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The straight line: covering

Think about the straight line of length 1.

How many boxes of size 1/3 do we need to cover this line?

Figure: We need 31 boxes of size 1/3.

A. Halavati (): What is dimension? 10/79 .
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The straight line: covering

How many boxes of size 1/8 do we need to cover this line?

Figure: We need 81 boxes of size 1/8.

A. Halavati (): What is dimension? 11/79 .



The straight line: covering

As you all guessed: How many boxes of size 1/26 do we need to cover this
line?

Figure: We need 261 boxes of size 1/26.

A. Halavati (): What is dimension? 12/79 .



The pattern

We need 3 boxes of size 1/3.

We need 8 boxes of size 1/8.

We need 26 boxes of size 1/26.

For the line of length 1:

We need
(
1
ϵ

)1
boxes of length ϵ to cover the line of length 1.

For the rest of the talk we will denote by number of boxes of size ϵ with Nϵ.
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Food for thought 1

What about a curly line?

Figure: 5 boxes of size 256 pixels.
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Food for thought 1

What about a curly line?

Figure: 5 boxes of size 256 pixels.
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Food for thought 1

Finer:

Figure: 11 boxes of size 128 pixels.

A. Halavati (): What is dimension? 15/79 .



Food for thought 1

And finer:

Figure: 24 boxes of size 64 pixels.

A. Halavati (): What is dimension? 16/79 .



Food for thought 1

And finer:

Figure: 49 boxes of size 32 pixels.

A. Halavati (): What is dimension? 17/79 .



Food for thought 1

And finer:

Figure: 101 boxes of size 16 pixels.

A. Halavati (): What is dimension? 18/79 .



Food for thought 1

And finer:

Figure: 201 boxes of size 8 pixels.

A. Halavati (): What is dimension? 19/79 .



Analyzing the numbers:

Let’s look again at the numbers:

N256 = 5

N128 = 11

N64 = 24

N32 = 49

N16 = 101

N8 = 201

When we halve the size, the number of squares double. This makes sense!

A. Halavati (): What is dimension? 20/79 .
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The Log-Log graph

If we plot log(Nϵ) versus log(ϵ) we see this graph:

Figure: The slope is one!

The inaccuracy in this estimate is the fact that large scales see less detail.A. Halavati (): What is dimension? 21/79 .



The linear relation

Not very surprising, because to cover a curve we need:

(Length).

(
1

ϵ

)1

number of boxes of size ϵ .

Taking a logarithm, we see:

log(Nϵ) = log(Length) + (Dimension) . log(1/ϵ) .

Using linear regression and data analysis techniques we can calculate this
empirically!

A. Halavati (): What is dimension? 22/79 .



Intuition

It looks like dimension could be about the growth of number of boxes we
need to cover versus their size.

A. Halavati (): What is dimension? 23/79 .



Food for thought 2

Let’s test this out for a square (easy thought experiment).

Like before we start covering:

Figure: 4 squares of side length 1/2.
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Food for thought 2

Let’s test this out for a square (easy thought experiment).
Like before we start covering:

Figure: 4 squares of side length 1/2.
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Food for thought 2

Like before we start covering:

Figure: 16 squares of side length 1/4.

A. Halavati (): What is dimension? 25/79 .



Food for thought 2

Like before we start covering:

Figure: 64 squares of side length 1/8.

A. Halavati (): What is dimension? 26/79 .



Food for thought 2

Like before we start covering:

Figure: 162 squares of side length 1/16.

A. Halavati (): What is dimension? 27/79 .



Food for thought 2

Like before we start covering:

Figure: 322 squares of side length 1/32.

A. Halavati (): What is dimension? 28/79 .



Food for thought 2

Like before we start covering:

Figure: 642 squares of side length 1/64.

A. Halavati (): What is dimension? 29/79 .



Analyzing the numbers 2

Let’s write down the numbers:

N1/2 = 22

N1/4 = 42

N1/8 = 82

N1/16 = 162

N1/32 = 322

N1/64 = 642

It looks like whenever we halve the size of the square, the number of
squares we need, multiplies by 4 = 22. Again this makes total SENSE!.

Not surprisingly, to cover a square of area A we need:

A
(
1

ϵ

)2

squares of size ϵ .

A. Halavati (): What is dimension? 30/79 .
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Intuition

This intuition works in all dimensions as well:

The growth of the covering, tells us the dimension. This is nice since we are
not talking about number of parameters, and it could be noninteger.

A. Halavati (): What is dimension? 31/79 .



We are ready
for fractals now!

A. Halavati (): What is dimension? 32/79 .



The first example

This is the Koch snowflake:

Figure: The process to make a Koch snowflake (curve).

Let’s see how many boxes we need to cover it!
A. Halavati (): What is dimension? 33/79 .



The covering

Let’s begin covering:

Figure: 6 boxes of length 128 pixels.

A. Halavati (): What is dimension? 34/79 .



The covering

Let’s begin covering:

Figure: 14 boxes of length 64 pixels.

A. Halavati (): What is dimension? 35/79 .



The covering

Let’s begin covering:

Figure: 32 boxes of length 32 pixels.

A. Halavati (): What is dimension? 36/79 .



The covering

Let’s begin covering:

Figure: 92 boxes of length 16 pixels.

A. Halavati (): What is dimension? 37/79 .



The covering

Let’s begin covering:

Figure: 197 boxes of length 8 pixels.

A. Halavati (): What is dimension? 38/79 .



The covering

Let’s begin covering:

Figure: 515 boxes of length 4 pixels.

A. Halavati (): What is dimension? 39/79 .



Analyzing the numbers

Let’s write down the numbers:

N128 = 6

N64 = 14

N32 = 32

N16 = 92

N8 = 197

N4 = 515

After a little bit of analysis we see that:

Nϵ ∼ C

(
1

ϵ

)1.26

.

Everytime we halve the size of the box, the number of boxes we need
multiplies by ∼ 21.26.

The dimension of the Koch snowflake is about 1.26 ∼ log(4)
log(3) . The dimension

is fractional and it is a fractal. (the origin of the word is this)

A. Halavati (): What is dimension? 40/79 .
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After a little bit of analysis we see that:

Nϵ ∼ C

(
1

ϵ

)1.26

.
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A. Halavati (): What is dimension? 40/79 .



Another view

We can also measure the slope of the log–log graph:

Figure: log(Nϵ) plotted against log(ϵ)

This is the dimension, (might have errors because of the resolution but it’s
close 1.33 ∼ 1.26)

A. Halavati (): What is dimension? 41/79 .



The box-counting dimension

This is in fact the definition of dimension. It is very simple, beautiful and at
the same time very powerful (Both practically and theoretically).

The rigorous definition is the following:

Minkowski–Bouligand (box–counting) dimension

The dimension of any set S ∈ Rn is the following limit:

dimbox(S) = lim
ϵ→0

log(Nϵ)

log(1/ϵ)
.

Here Nϵ is the minimum number of boxes of size ϵ we need to cover S .

Now let’s do some more experiments.

A. Halavati (): What is dimension? 42/79 .
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The tree

Let’s find out the dimension of the tree we saw in the beginning:

Figure: 51 boxes of size 128.

A. Halavati (): What is dimension? 43/79 .



The tree

Making boxes smaller:

Figure: 196 boxes of size 64.

A. Halavati (): What is dimension? 44/79 .



The tree

Making boxes smaller:

Figure: 702 boxes of size 32.

A. Halavati (): What is dimension? 45/79 .



The tree

Making boxes smaller:

Figure: 2234 boxes of size 16.

A. Halavati (): What is dimension? 46/79 .



The tree

Making boxes smaller:

Figure: 5853 boxes of size 8.

A. Halavati (): What is dimension? 47/79 .



The tree

Making boxes smaller:

Figure: 13627 boxes of size 4.

A. Halavati (): What is dimension? 48/79 .



Analyzing

Let’s write down the numbers:

N128 = 51

N64 = 196

N32 = 702

N16 = 2234

N8 = 5853

N4 = 13627.

After a little analysis, we see that every time the box halves in size, the
number of boxes multiplies by ∼ 21.7. The dimension of this tree is 1.7.

A. Halavati (): What is dimension? 49/79 .



Example: leaf

For the leaf we cover as follows:

A. Halavati (): What is dimension? 50/79 .



Example: leaf

For the leaf we cover as follows:
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Example: leaf

or the leaf we cover as follows:
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Example: leaf

For the leaf we cover as follows:

A. Halavati (): What is dimension? 53/79 .



Analysis

This leaf has 1.74 dimension:

A. Halavati (): What is dimension? 54/79 .



Hausdorff measure

We can also find the s dimensional volume of a set S ⊂ R2. For a curve it’s
easy:

Figure: 5 boxes of size 256 pixels.

We sum the number of squares time the side length:

5 ∗ 256 = 1280 .

A. Halavati (): What is dimension? 55/79 .



Length of curve

Making finer estimates:

Figure: 11 boxes of size 128 pixels.

We sum the number of squares time the side length:

11 ∗ 128 = 1408 .

A. Halavati (): What is dimension? 56/79 .
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Making finer estimates:

Figure: 11 boxes of size 128 pixels.

We sum the number of squares time the side length:

11 ∗ 128 = 1408 .
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Length of curve

Making finer estimates:

Figure: 24 boxes of size 64 pixels.

We sum the number of squares time the side length:

24 ∗ 64 = 1536 .

A. Halavati (): What is dimension? 58/79 .



Length of curve

Making finer estimates:

Figure: 49 boxes of size 32 pixels.

We sum the number of squares time the side length:

49 ∗ 32 = 1568 .

A. Halavati (): What is dimension? 59/79 .



Length of curve

Making finer estimates:

Figure: 101 boxes of size 16 pixels.

We sum the number of squares time the side length:

101 ∗ 16 = 1616 .

A. Halavati (): What is dimension? 60/79 .



Length of curve

Making finer estimates:

Figure: 201 boxes of size 8 pixels.

We sum the number of squares time the side length:

201 ∗ 8 = 1608 .

And this is the best estimate.

A. Halavati (): What is dimension? 61/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 6 boxes of length 128 pixels.

We calculate:

6 ∗ 128
log(4)
log(3) ∼ 2725 .

A. Halavati (): What is dimension? 62/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 14 boxes of length 64 pixels.

We calculate:

14 ∗ 64
log(4)
log(3) ∼ 2653 .

A. Halavati (): What is dimension? 63/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 32 boxes of length 32 pixels.

We calculate:

32 ∗ 32
log(4)
log(3) ∼ 2530 .

A. Halavati (): What is dimension? 64/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 92 boxes of length 16 pixels.

We calculate:

92 ∗ 16
log(4)
log(3) ∼ 3035 .

A. Halavati (): What is dimension? 65/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 197 boxes of length 8 pixels.

We calculate:

197 ∗ 8
log(4)
log(3) ∼ 2712 .

A. Halavati (): What is dimension? 66/79 .



Haussdorf measure

Remember the Koch snowflake had dimension log(4)/ log(3). Let’s find the
log(4)
log(3) -dimensional volume of the Koch snowflake:

Figure: 515 boxes of length 4 pixels.

We calculate:

515 ∗ 4
log(4)
log(3) ∼ 2958 .

This is the best estimate.
A. Halavati (): What is dimension? 67/79 .



Epilogue

There are many different definitions of dimension with their own special
properties:

Hausdorff, Minkowski, Assouad and many more.

Some are bigger than the others, some are more useful in certain
situations and easier to study given certain tools.

However they share a simple fact: To determine the dimension of a set, we
have to look at finer and finer scales (zoom in).

A. Halavati (): What is dimension? 68/79 .



A famous problem: Kakeya sets

Let me talk about an old, famous and beautiful problem in this field:

Imagine you have a needle of unit length in the plane. Anywhere you
move the needle, it colors its trace:

The goal is to turn the needle 180 degrees, while coloring the least area
possible. How much is this area?

A. Halavati (): What is dimension? 69/79 .
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Kakeya: continued

The answer is 0! CRAZY, right? In fact for any small ϵ > 0, there is a way
you can turn over the needle with the area traced less than ϵ.

The smaller
you make ϵ > 0, the pointier the set become:

A. Halavati (): What is dimension? 70/79 .
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The answer is 0! CRAZY, right? In fact for any small ϵ > 0, there is a way
you can turn over the needle with the area traced less than ϵ. The smaller
you make ϵ > 0, the pointier the set become:

A. Halavati (): What is dimension? 70/79 .



Kakeya: continued

We can make ϵ smaller and smaller and take a limit of these crazy pointy
looking sets.

A. Halavati (): What is dimension? 71/79 .



Kakeya sets

We define:

Kakeya sets

It’s a set S ∈ Rn that has unit segments in every direction.

These sets can be super small, What about their dimension? In 1917
Kakeya proposed the following conjecture

Kakeya Conjecture

Any Kakeya set in Rn has (Hausdorff) dimension at least n.

A. Halavati (): What is dimension? 72/79 .
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Kakeya sets

It’s a set S ∈ Rn that has unit segments in every direction.

These sets can be super small, What about their dimension? In 1917
Kakeya proposed the following conjecture
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Resolutions: dim 2,3

In dimension 2 this problem has been solved for a long time, however the
case of dimension 3 remained unsolved for more than 50 years until last
month! Our own Hong Wang along with Joshua Zahl cracked the
problem (in a 127 page paper).
Many have cited this progress as one of the most exciting and important of
this century.
Today, we could understand what this question even means.

A. Halavati (): What is dimension? 73/79 .



Minimal surfaces

Bubbles, always find the minimum area possible! either with a fixed
boundary:

Figure: Bubbles in Central Park (J.A.)

A. Halavati (): What is dimension? 74/79 .



Minimal surfaces

Or they minimize area with some air trapped inside:

They have also places that than two bubble sheets touch, with a different
angle than 180. These places are called Singular points. One can ask how
big is this set? Or we can ask

How big is the dimension of the Singular set?

There are still fundamental facts that are unknown about this problem.

A. Halavati (): What is dimension? 75/79 .



Bubbles

They can also look more complicated, or be very unstable:

Figure: Minimal surfaces

A. Halavati (): What is dimension? 76/79 .



Minimal surfaces

What do they look like? Can we say anything about them?

A. Halavati (): What is dimension? 77/79 .



Finale

And I hope after this talk, you can look a little differently at the nature
around you.
and maybe ask a bit more...

What about the dimension of your lungs?

what about the dimension of your neurons in your brain?

What about the dimension of the roads in a city? What about the
dimensions of a Broccoli?

Today’s talk was a topic in the vast field of Geometric Measure Theory.
In GMT we study and analyze geometric shapes and their properties.

A. Halavati (): What is dimension? 78/79 .



Thank you
for your attention!

A. Halavati (): What is dimension? 79/79 .


